(0) Obligation:

Clauses:

m(X, 0, Z) :- ','(!, =(Z, X)).
m(0, Y, Z) :- ','(!, =(Z, 0)).
m(X, Y, Z) :- ','(p(X, A), ','(p(Y, B), m(A, B, Z))).
p(0, 0).
p(s(0), 0).
p(s(s(X)), s(Y)) :- p(s(X), Y).
=(X, X).

Query: m(g,g,a)

(1) BuiltinConflictTransformerProof (EQUIVALENT transformation)

Renamed defined predicates conflicting with built-in predicates [PROLOG].

(2) Obligation:

Clauses:

m(X, 0, Z) :- ','(!, user_defined_=(Z, X)).
m(0, Y, Z) :- ','(!, user_defined_=(Z, 0)).
m(X, Y, Z) :- ','(p(X, A), ','(p(Y, B), m(A, B, Z))).
p(0, 0).
p(s(0), 0).
p(s(s(X)), s(Y)) :- p(s(X), Y).
user_defined_=(X, X).

Query: m(g,g,a)

(3) PrologToPrologProblemTransformerProof (SOUND transformation)

Built Prolog problem from termination graph ICLP10.

(4) Obligation:

Clauses:

pA(0, 0).
pA(s(T33), s(X40)) :- pA(T33, X40).
pB(s(0), 0).
pB(s(s(T30)), s(X31)) :- pA(T30, X31).
pC(s(0), 0).
pC(s(s(T60)), s(X78)) :- pA(T60, X78).
mD(T11, 0, T11).
mD(0, T14, 0).
mD(s(0), T24, T26) :- pB(T24, X22).
mD(s(0), T24, 0) :- pB(T24, 0).
mD(s(0), T24, 0) :- pB(T24, T47).
mD(s(s(T55)), T24, T26) :- pA(T55, X69).
mD(s(s(T55)), T24, T26) :- ','(pA(T55, T56), pC(T24, X22)).
mD(s(s(T55)), T24, T26) :- ','(pA(T55, T56), ','(pC(T24, T57), mD(s(T56), T57, T26))).

Query: mD(g,g,a)

(5) PrologToPiTRSProof (SOUND transformation)

We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes:
mD_in: (b,b,f)
pB_in: (b,f) (b,b)
pA_in: (b,f) (b,b)
pC_in: (b,f)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

mD_in_gga(T11, 0, T11) → mD_out_gga(T11, 0, T11)
mD_in_gga(0, T14, 0) → mD_out_gga(0, T14, 0)
mD_in_gga(s(0), T24, T26) → U4_gga(T24, T26, pB_in_ga(T24, X22))
pB_in_ga(s(0), 0) → pB_out_ga(s(0), 0)
pB_in_ga(s(s(T30)), s(X31)) → U2_ga(T30, X31, pA_in_ga(T30, X31))
pA_in_ga(0, 0) → pA_out_ga(0, 0)
pA_in_ga(s(T33), s(X40)) → U1_ga(T33, X40, pA_in_ga(T33, X40))
U1_ga(T33, X40, pA_out_ga(T33, X40)) → pA_out_ga(s(T33), s(X40))
U2_ga(T30, X31, pA_out_ga(T30, X31)) → pB_out_ga(s(s(T30)), s(X31))
U4_gga(T24, T26, pB_out_ga(T24, X22)) → mD_out_gga(s(0), T24, T26)
mD_in_gga(s(0), T24, 0) → U5_gga(T24, pB_in_gg(T24, 0))
pB_in_gg(s(0), 0) → pB_out_gg(s(0), 0)
pB_in_gg(s(s(T30)), s(X31)) → U2_gg(T30, X31, pA_in_gg(T30, X31))
pA_in_gg(0, 0) → pA_out_gg(0, 0)
pA_in_gg(s(T33), s(X40)) → U1_gg(T33, X40, pA_in_gg(T33, X40))
U1_gg(T33, X40, pA_out_gg(T33, X40)) → pA_out_gg(s(T33), s(X40))
U2_gg(T30, X31, pA_out_gg(T30, X31)) → pB_out_gg(s(s(T30)), s(X31))
U5_gga(T24, pB_out_gg(T24, 0)) → mD_out_gga(s(0), T24, 0)
mD_in_gga(s(0), T24, 0) → U6_gga(T24, pB_in_ga(T24, T47))
U6_gga(T24, pB_out_ga(T24, T47)) → mD_out_gga(s(0), T24, 0)
mD_in_gga(s(s(T55)), T24, T26) → U7_gga(T55, T24, T26, pA_in_ga(T55, X69))
U7_gga(T55, T24, T26, pA_out_ga(T55, X69)) → mD_out_gga(s(s(T55)), T24, T26)
mD_in_gga(s(s(T55)), T24, T26) → U8_gga(T55, T24, T26, pA_in_ga(T55, T56))
U8_gga(T55, T24, T26, pA_out_ga(T55, T56)) → U9_gga(T55, T24, T26, pC_in_ga(T24, X22))
pC_in_ga(s(0), 0) → pC_out_ga(s(0), 0)
pC_in_ga(s(s(T60)), s(X78)) → U3_ga(T60, X78, pA_in_ga(T60, X78))
U3_ga(T60, X78, pA_out_ga(T60, X78)) → pC_out_ga(s(s(T60)), s(X78))
U9_gga(T55, T24, T26, pC_out_ga(T24, X22)) → mD_out_gga(s(s(T55)), T24, T26)
U8_gga(T55, T24, T26, pA_out_ga(T55, T56)) → U10_gga(T55, T24, T26, T56, pC_in_ga(T24, T57))
U10_gga(T55, T24, T26, T56, pC_out_ga(T24, T57)) → U11_gga(T55, T24, T26, mD_in_gga(s(T56), T57, T26))
U11_gga(T55, T24, T26, mD_out_gga(s(T56), T57, T26)) → mD_out_gga(s(s(T55)), T24, T26)

The argument filtering Pi contains the following mapping:
mD_in_gga(x1, x2, x3)  =  mD_in_gga(x1, x2)
0  =  0
mD_out_gga(x1, x2, x3)  =  mD_out_gga
s(x1)  =  s(x1)
U4_gga(x1, x2, x3)  =  U4_gga(x3)
pB_in_ga(x1, x2)  =  pB_in_ga(x1)
pB_out_ga(x1, x2)  =  pB_out_ga(x2)
U2_ga(x1, x2, x3)  =  U2_ga(x3)
pA_in_ga(x1, x2)  =  pA_in_ga(x1)
pA_out_ga(x1, x2)  =  pA_out_ga(x2)
U1_ga(x1, x2, x3)  =  U1_ga(x3)
U5_gga(x1, x2)  =  U5_gga(x2)
pB_in_gg(x1, x2)  =  pB_in_gg(x1, x2)
pB_out_gg(x1, x2)  =  pB_out_gg
U2_gg(x1, x2, x3)  =  U2_gg(x3)
pA_in_gg(x1, x2)  =  pA_in_gg(x1, x2)
pA_out_gg(x1, x2)  =  pA_out_gg
U1_gg(x1, x2, x3)  =  U1_gg(x3)
U6_gga(x1, x2)  =  U6_gga(x2)
U7_gga(x1, x2, x3, x4)  =  U7_gga(x4)
U8_gga(x1, x2, x3, x4)  =  U8_gga(x2, x4)
U9_gga(x1, x2, x3, x4)  =  U9_gga(x4)
pC_in_ga(x1, x2)  =  pC_in_ga(x1)
pC_out_ga(x1, x2)  =  pC_out_ga(x2)
U3_ga(x1, x2, x3)  =  U3_ga(x3)
U10_gga(x1, x2, x3, x4, x5)  =  U10_gga(x4, x5)
U11_gga(x1, x2, x3, x4)  =  U11_gga(x4)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(6) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

mD_in_gga(T11, 0, T11) → mD_out_gga(T11, 0, T11)
mD_in_gga(0, T14, 0) → mD_out_gga(0, T14, 0)
mD_in_gga(s(0), T24, T26) → U4_gga(T24, T26, pB_in_ga(T24, X22))
pB_in_ga(s(0), 0) → pB_out_ga(s(0), 0)
pB_in_ga(s(s(T30)), s(X31)) → U2_ga(T30, X31, pA_in_ga(T30, X31))
pA_in_ga(0, 0) → pA_out_ga(0, 0)
pA_in_ga(s(T33), s(X40)) → U1_ga(T33, X40, pA_in_ga(T33, X40))
U1_ga(T33, X40, pA_out_ga(T33, X40)) → pA_out_ga(s(T33), s(X40))
U2_ga(T30, X31, pA_out_ga(T30, X31)) → pB_out_ga(s(s(T30)), s(X31))
U4_gga(T24, T26, pB_out_ga(T24, X22)) → mD_out_gga(s(0), T24, T26)
mD_in_gga(s(0), T24, 0) → U5_gga(T24, pB_in_gg(T24, 0))
pB_in_gg(s(0), 0) → pB_out_gg(s(0), 0)
pB_in_gg(s(s(T30)), s(X31)) → U2_gg(T30, X31, pA_in_gg(T30, X31))
pA_in_gg(0, 0) → pA_out_gg(0, 0)
pA_in_gg(s(T33), s(X40)) → U1_gg(T33, X40, pA_in_gg(T33, X40))
U1_gg(T33, X40, pA_out_gg(T33, X40)) → pA_out_gg(s(T33), s(X40))
U2_gg(T30, X31, pA_out_gg(T30, X31)) → pB_out_gg(s(s(T30)), s(X31))
U5_gga(T24, pB_out_gg(T24, 0)) → mD_out_gga(s(0), T24, 0)
mD_in_gga(s(0), T24, 0) → U6_gga(T24, pB_in_ga(T24, T47))
U6_gga(T24, pB_out_ga(T24, T47)) → mD_out_gga(s(0), T24, 0)
mD_in_gga(s(s(T55)), T24, T26) → U7_gga(T55, T24, T26, pA_in_ga(T55, X69))
U7_gga(T55, T24, T26, pA_out_ga(T55, X69)) → mD_out_gga(s(s(T55)), T24, T26)
mD_in_gga(s(s(T55)), T24, T26) → U8_gga(T55, T24, T26, pA_in_ga(T55, T56))
U8_gga(T55, T24, T26, pA_out_ga(T55, T56)) → U9_gga(T55, T24, T26, pC_in_ga(T24, X22))
pC_in_ga(s(0), 0) → pC_out_ga(s(0), 0)
pC_in_ga(s(s(T60)), s(X78)) → U3_ga(T60, X78, pA_in_ga(T60, X78))
U3_ga(T60, X78, pA_out_ga(T60, X78)) → pC_out_ga(s(s(T60)), s(X78))
U9_gga(T55, T24, T26, pC_out_ga(T24, X22)) → mD_out_gga(s(s(T55)), T24, T26)
U8_gga(T55, T24, T26, pA_out_ga(T55, T56)) → U10_gga(T55, T24, T26, T56, pC_in_ga(T24, T57))
U10_gga(T55, T24, T26, T56, pC_out_ga(T24, T57)) → U11_gga(T55, T24, T26, mD_in_gga(s(T56), T57, T26))
U11_gga(T55, T24, T26, mD_out_gga(s(T56), T57, T26)) → mD_out_gga(s(s(T55)), T24, T26)

The argument filtering Pi contains the following mapping:
mD_in_gga(x1, x2, x3)  =  mD_in_gga(x1, x2)
0  =  0
mD_out_gga(x1, x2, x3)  =  mD_out_gga
s(x1)  =  s(x1)
U4_gga(x1, x2, x3)  =  U4_gga(x3)
pB_in_ga(x1, x2)  =  pB_in_ga(x1)
pB_out_ga(x1, x2)  =  pB_out_ga(x2)
U2_ga(x1, x2, x3)  =  U2_ga(x3)
pA_in_ga(x1, x2)  =  pA_in_ga(x1)
pA_out_ga(x1, x2)  =  pA_out_ga(x2)
U1_ga(x1, x2, x3)  =  U1_ga(x3)
U5_gga(x1, x2)  =  U5_gga(x2)
pB_in_gg(x1, x2)  =  pB_in_gg(x1, x2)
pB_out_gg(x1, x2)  =  pB_out_gg
U2_gg(x1, x2, x3)  =  U2_gg(x3)
pA_in_gg(x1, x2)  =  pA_in_gg(x1, x2)
pA_out_gg(x1, x2)  =  pA_out_gg
U1_gg(x1, x2, x3)  =  U1_gg(x3)
U6_gga(x1, x2)  =  U6_gga(x2)
U7_gga(x1, x2, x3, x4)  =  U7_gga(x4)
U8_gga(x1, x2, x3, x4)  =  U8_gga(x2, x4)
U9_gga(x1, x2, x3, x4)  =  U9_gga(x4)
pC_in_ga(x1, x2)  =  pC_in_ga(x1)
pC_out_ga(x1, x2)  =  pC_out_ga(x2)
U3_ga(x1, x2, x3)  =  U3_ga(x3)
U10_gga(x1, x2, x3, x4, x5)  =  U10_gga(x4, x5)
U11_gga(x1, x2, x3, x4)  =  U11_gga(x4)

(7) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

MD_IN_GGA(s(0), T24, T26) → U4_GGA(T24, T26, pB_in_ga(T24, X22))
MD_IN_GGA(s(0), T24, T26) → PB_IN_GA(T24, X22)
PB_IN_GA(s(s(T30)), s(X31)) → U2_GA(T30, X31, pA_in_ga(T30, X31))
PB_IN_GA(s(s(T30)), s(X31)) → PA_IN_GA(T30, X31)
PA_IN_GA(s(T33), s(X40)) → U1_GA(T33, X40, pA_in_ga(T33, X40))
PA_IN_GA(s(T33), s(X40)) → PA_IN_GA(T33, X40)
MD_IN_GGA(s(0), T24, 0) → U5_GGA(T24, pB_in_gg(T24, 0))
MD_IN_GGA(s(0), T24, 0) → PB_IN_GG(T24, 0)
PB_IN_GG(s(s(T30)), s(X31)) → U2_GG(T30, X31, pA_in_gg(T30, X31))
PB_IN_GG(s(s(T30)), s(X31)) → PA_IN_GG(T30, X31)
PA_IN_GG(s(T33), s(X40)) → U1_GG(T33, X40, pA_in_gg(T33, X40))
PA_IN_GG(s(T33), s(X40)) → PA_IN_GG(T33, X40)
MD_IN_GGA(s(0), T24, 0) → U6_GGA(T24, pB_in_ga(T24, T47))
MD_IN_GGA(s(0), T24, 0) → PB_IN_GA(T24, T47)
MD_IN_GGA(s(s(T55)), T24, T26) → U7_GGA(T55, T24, T26, pA_in_ga(T55, X69))
MD_IN_GGA(s(s(T55)), T24, T26) → PA_IN_GA(T55, X69)
MD_IN_GGA(s(s(T55)), T24, T26) → U8_GGA(T55, T24, T26, pA_in_ga(T55, T56))
U8_GGA(T55, T24, T26, pA_out_ga(T55, T56)) → U9_GGA(T55, T24, T26, pC_in_ga(T24, X22))
U8_GGA(T55, T24, T26, pA_out_ga(T55, T56)) → PC_IN_GA(T24, X22)
PC_IN_GA(s(s(T60)), s(X78)) → U3_GA(T60, X78, pA_in_ga(T60, X78))
PC_IN_GA(s(s(T60)), s(X78)) → PA_IN_GA(T60, X78)
U8_GGA(T55, T24, T26, pA_out_ga(T55, T56)) → U10_GGA(T55, T24, T26, T56, pC_in_ga(T24, T57))
U10_GGA(T55, T24, T26, T56, pC_out_ga(T24, T57)) → U11_GGA(T55, T24, T26, mD_in_gga(s(T56), T57, T26))
U10_GGA(T55, T24, T26, T56, pC_out_ga(T24, T57)) → MD_IN_GGA(s(T56), T57, T26)

The TRS R consists of the following rules:

mD_in_gga(T11, 0, T11) → mD_out_gga(T11, 0, T11)
mD_in_gga(0, T14, 0) → mD_out_gga(0, T14, 0)
mD_in_gga(s(0), T24, T26) → U4_gga(T24, T26, pB_in_ga(T24, X22))
pB_in_ga(s(0), 0) → pB_out_ga(s(0), 0)
pB_in_ga(s(s(T30)), s(X31)) → U2_ga(T30, X31, pA_in_ga(T30, X31))
pA_in_ga(0, 0) → pA_out_ga(0, 0)
pA_in_ga(s(T33), s(X40)) → U1_ga(T33, X40, pA_in_ga(T33, X40))
U1_ga(T33, X40, pA_out_ga(T33, X40)) → pA_out_ga(s(T33), s(X40))
U2_ga(T30, X31, pA_out_ga(T30, X31)) → pB_out_ga(s(s(T30)), s(X31))
U4_gga(T24, T26, pB_out_ga(T24, X22)) → mD_out_gga(s(0), T24, T26)
mD_in_gga(s(0), T24, 0) → U5_gga(T24, pB_in_gg(T24, 0))
pB_in_gg(s(0), 0) → pB_out_gg(s(0), 0)
pB_in_gg(s(s(T30)), s(X31)) → U2_gg(T30, X31, pA_in_gg(T30, X31))
pA_in_gg(0, 0) → pA_out_gg(0, 0)
pA_in_gg(s(T33), s(X40)) → U1_gg(T33, X40, pA_in_gg(T33, X40))
U1_gg(T33, X40, pA_out_gg(T33, X40)) → pA_out_gg(s(T33), s(X40))
U2_gg(T30, X31, pA_out_gg(T30, X31)) → pB_out_gg(s(s(T30)), s(X31))
U5_gga(T24, pB_out_gg(T24, 0)) → mD_out_gga(s(0), T24, 0)
mD_in_gga(s(0), T24, 0) → U6_gga(T24, pB_in_ga(T24, T47))
U6_gga(T24, pB_out_ga(T24, T47)) → mD_out_gga(s(0), T24, 0)
mD_in_gga(s(s(T55)), T24, T26) → U7_gga(T55, T24, T26, pA_in_ga(T55, X69))
U7_gga(T55, T24, T26, pA_out_ga(T55, X69)) → mD_out_gga(s(s(T55)), T24, T26)
mD_in_gga(s(s(T55)), T24, T26) → U8_gga(T55, T24, T26, pA_in_ga(T55, T56))
U8_gga(T55, T24, T26, pA_out_ga(T55, T56)) → U9_gga(T55, T24, T26, pC_in_ga(T24, X22))
pC_in_ga(s(0), 0) → pC_out_ga(s(0), 0)
pC_in_ga(s(s(T60)), s(X78)) → U3_ga(T60, X78, pA_in_ga(T60, X78))
U3_ga(T60, X78, pA_out_ga(T60, X78)) → pC_out_ga(s(s(T60)), s(X78))
U9_gga(T55, T24, T26, pC_out_ga(T24, X22)) → mD_out_gga(s(s(T55)), T24, T26)
U8_gga(T55, T24, T26, pA_out_ga(T55, T56)) → U10_gga(T55, T24, T26, T56, pC_in_ga(T24, T57))
U10_gga(T55, T24, T26, T56, pC_out_ga(T24, T57)) → U11_gga(T55, T24, T26, mD_in_gga(s(T56), T57, T26))
U11_gga(T55, T24, T26, mD_out_gga(s(T56), T57, T26)) → mD_out_gga(s(s(T55)), T24, T26)

The argument filtering Pi contains the following mapping:
mD_in_gga(x1, x2, x3)  =  mD_in_gga(x1, x2)
0  =  0
mD_out_gga(x1, x2, x3)  =  mD_out_gga
s(x1)  =  s(x1)
U4_gga(x1, x2, x3)  =  U4_gga(x3)
pB_in_ga(x1, x2)  =  pB_in_ga(x1)
pB_out_ga(x1, x2)  =  pB_out_ga(x2)
U2_ga(x1, x2, x3)  =  U2_ga(x3)
pA_in_ga(x1, x2)  =  pA_in_ga(x1)
pA_out_ga(x1, x2)  =  pA_out_ga(x2)
U1_ga(x1, x2, x3)  =  U1_ga(x3)
U5_gga(x1, x2)  =  U5_gga(x2)
pB_in_gg(x1, x2)  =  pB_in_gg(x1, x2)
pB_out_gg(x1, x2)  =  pB_out_gg
U2_gg(x1, x2, x3)  =  U2_gg(x3)
pA_in_gg(x1, x2)  =  pA_in_gg(x1, x2)
pA_out_gg(x1, x2)  =  pA_out_gg
U1_gg(x1, x2, x3)  =  U1_gg(x3)
U6_gga(x1, x2)  =  U6_gga(x2)
U7_gga(x1, x2, x3, x4)  =  U7_gga(x4)
U8_gga(x1, x2, x3, x4)  =  U8_gga(x2, x4)
U9_gga(x1, x2, x3, x4)  =  U9_gga(x4)
pC_in_ga(x1, x2)  =  pC_in_ga(x1)
pC_out_ga(x1, x2)  =  pC_out_ga(x2)
U3_ga(x1, x2, x3)  =  U3_ga(x3)
U10_gga(x1, x2, x3, x4, x5)  =  U10_gga(x4, x5)
U11_gga(x1, x2, x3, x4)  =  U11_gga(x4)
MD_IN_GGA(x1, x2, x3)  =  MD_IN_GGA(x1, x2)
U4_GGA(x1, x2, x3)  =  U4_GGA(x3)
PB_IN_GA(x1, x2)  =  PB_IN_GA(x1)
U2_GA(x1, x2, x3)  =  U2_GA(x3)
PA_IN_GA(x1, x2)  =  PA_IN_GA(x1)
U1_GA(x1, x2, x3)  =  U1_GA(x3)
U5_GGA(x1, x2)  =  U5_GGA(x2)
PB_IN_GG(x1, x2)  =  PB_IN_GG(x1, x2)
U2_GG(x1, x2, x3)  =  U2_GG(x3)
PA_IN_GG(x1, x2)  =  PA_IN_GG(x1, x2)
U1_GG(x1, x2, x3)  =  U1_GG(x3)
U6_GGA(x1, x2)  =  U6_GGA(x2)
U7_GGA(x1, x2, x3, x4)  =  U7_GGA(x4)
U8_GGA(x1, x2, x3, x4)  =  U8_GGA(x2, x4)
U9_GGA(x1, x2, x3, x4)  =  U9_GGA(x4)
PC_IN_GA(x1, x2)  =  PC_IN_GA(x1)
U3_GA(x1, x2, x3)  =  U3_GA(x3)
U10_GGA(x1, x2, x3, x4, x5)  =  U10_GGA(x4, x5)
U11_GGA(x1, x2, x3, x4)  =  U11_GGA(x4)

We have to consider all (P,R,Pi)-chains

(8) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MD_IN_GGA(s(0), T24, T26) → U4_GGA(T24, T26, pB_in_ga(T24, X22))
MD_IN_GGA(s(0), T24, T26) → PB_IN_GA(T24, X22)
PB_IN_GA(s(s(T30)), s(X31)) → U2_GA(T30, X31, pA_in_ga(T30, X31))
PB_IN_GA(s(s(T30)), s(X31)) → PA_IN_GA(T30, X31)
PA_IN_GA(s(T33), s(X40)) → U1_GA(T33, X40, pA_in_ga(T33, X40))
PA_IN_GA(s(T33), s(X40)) → PA_IN_GA(T33, X40)
MD_IN_GGA(s(0), T24, 0) → U5_GGA(T24, pB_in_gg(T24, 0))
MD_IN_GGA(s(0), T24, 0) → PB_IN_GG(T24, 0)
PB_IN_GG(s(s(T30)), s(X31)) → U2_GG(T30, X31, pA_in_gg(T30, X31))
PB_IN_GG(s(s(T30)), s(X31)) → PA_IN_GG(T30, X31)
PA_IN_GG(s(T33), s(X40)) → U1_GG(T33, X40, pA_in_gg(T33, X40))
PA_IN_GG(s(T33), s(X40)) → PA_IN_GG(T33, X40)
MD_IN_GGA(s(0), T24, 0) → U6_GGA(T24, pB_in_ga(T24, T47))
MD_IN_GGA(s(0), T24, 0) → PB_IN_GA(T24, T47)
MD_IN_GGA(s(s(T55)), T24, T26) → U7_GGA(T55, T24, T26, pA_in_ga(T55, X69))
MD_IN_GGA(s(s(T55)), T24, T26) → PA_IN_GA(T55, X69)
MD_IN_GGA(s(s(T55)), T24, T26) → U8_GGA(T55, T24, T26, pA_in_ga(T55, T56))
U8_GGA(T55, T24, T26, pA_out_ga(T55, T56)) → U9_GGA(T55, T24, T26, pC_in_ga(T24, X22))
U8_GGA(T55, T24, T26, pA_out_ga(T55, T56)) → PC_IN_GA(T24, X22)
PC_IN_GA(s(s(T60)), s(X78)) → U3_GA(T60, X78, pA_in_ga(T60, X78))
PC_IN_GA(s(s(T60)), s(X78)) → PA_IN_GA(T60, X78)
U8_GGA(T55, T24, T26, pA_out_ga(T55, T56)) → U10_GGA(T55, T24, T26, T56, pC_in_ga(T24, T57))
U10_GGA(T55, T24, T26, T56, pC_out_ga(T24, T57)) → U11_GGA(T55, T24, T26, mD_in_gga(s(T56), T57, T26))
U10_GGA(T55, T24, T26, T56, pC_out_ga(T24, T57)) → MD_IN_GGA(s(T56), T57, T26)

The TRS R consists of the following rules:

mD_in_gga(T11, 0, T11) → mD_out_gga(T11, 0, T11)
mD_in_gga(0, T14, 0) → mD_out_gga(0, T14, 0)
mD_in_gga(s(0), T24, T26) → U4_gga(T24, T26, pB_in_ga(T24, X22))
pB_in_ga(s(0), 0) → pB_out_ga(s(0), 0)
pB_in_ga(s(s(T30)), s(X31)) → U2_ga(T30, X31, pA_in_ga(T30, X31))
pA_in_ga(0, 0) → pA_out_ga(0, 0)
pA_in_ga(s(T33), s(X40)) → U1_ga(T33, X40, pA_in_ga(T33, X40))
U1_ga(T33, X40, pA_out_ga(T33, X40)) → pA_out_ga(s(T33), s(X40))
U2_ga(T30, X31, pA_out_ga(T30, X31)) → pB_out_ga(s(s(T30)), s(X31))
U4_gga(T24, T26, pB_out_ga(T24, X22)) → mD_out_gga(s(0), T24, T26)
mD_in_gga(s(0), T24, 0) → U5_gga(T24, pB_in_gg(T24, 0))
pB_in_gg(s(0), 0) → pB_out_gg(s(0), 0)
pB_in_gg(s(s(T30)), s(X31)) → U2_gg(T30, X31, pA_in_gg(T30, X31))
pA_in_gg(0, 0) → pA_out_gg(0, 0)
pA_in_gg(s(T33), s(X40)) → U1_gg(T33, X40, pA_in_gg(T33, X40))
U1_gg(T33, X40, pA_out_gg(T33, X40)) → pA_out_gg(s(T33), s(X40))
U2_gg(T30, X31, pA_out_gg(T30, X31)) → pB_out_gg(s(s(T30)), s(X31))
U5_gga(T24, pB_out_gg(T24, 0)) → mD_out_gga(s(0), T24, 0)
mD_in_gga(s(0), T24, 0) → U6_gga(T24, pB_in_ga(T24, T47))
U6_gga(T24, pB_out_ga(T24, T47)) → mD_out_gga(s(0), T24, 0)
mD_in_gga(s(s(T55)), T24, T26) → U7_gga(T55, T24, T26, pA_in_ga(T55, X69))
U7_gga(T55, T24, T26, pA_out_ga(T55, X69)) → mD_out_gga(s(s(T55)), T24, T26)
mD_in_gga(s(s(T55)), T24, T26) → U8_gga(T55, T24, T26, pA_in_ga(T55, T56))
U8_gga(T55, T24, T26, pA_out_ga(T55, T56)) → U9_gga(T55, T24, T26, pC_in_ga(T24, X22))
pC_in_ga(s(0), 0) → pC_out_ga(s(0), 0)
pC_in_ga(s(s(T60)), s(X78)) → U3_ga(T60, X78, pA_in_ga(T60, X78))
U3_ga(T60, X78, pA_out_ga(T60, X78)) → pC_out_ga(s(s(T60)), s(X78))
U9_gga(T55, T24, T26, pC_out_ga(T24, X22)) → mD_out_gga(s(s(T55)), T24, T26)
U8_gga(T55, T24, T26, pA_out_ga(T55, T56)) → U10_gga(T55, T24, T26, T56, pC_in_ga(T24, T57))
U10_gga(T55, T24, T26, T56, pC_out_ga(T24, T57)) → U11_gga(T55, T24, T26, mD_in_gga(s(T56), T57, T26))
U11_gga(T55, T24, T26, mD_out_gga(s(T56), T57, T26)) → mD_out_gga(s(s(T55)), T24, T26)

The argument filtering Pi contains the following mapping:
mD_in_gga(x1, x2, x3)  =  mD_in_gga(x1, x2)
0  =  0
mD_out_gga(x1, x2, x3)  =  mD_out_gga
s(x1)  =  s(x1)
U4_gga(x1, x2, x3)  =  U4_gga(x3)
pB_in_ga(x1, x2)  =  pB_in_ga(x1)
pB_out_ga(x1, x2)  =  pB_out_ga(x2)
U2_ga(x1, x2, x3)  =  U2_ga(x3)
pA_in_ga(x1, x2)  =  pA_in_ga(x1)
pA_out_ga(x1, x2)  =  pA_out_ga(x2)
U1_ga(x1, x2, x3)  =  U1_ga(x3)
U5_gga(x1, x2)  =  U5_gga(x2)
pB_in_gg(x1, x2)  =  pB_in_gg(x1, x2)
pB_out_gg(x1, x2)  =  pB_out_gg
U2_gg(x1, x2, x3)  =  U2_gg(x3)
pA_in_gg(x1, x2)  =  pA_in_gg(x1, x2)
pA_out_gg(x1, x2)  =  pA_out_gg
U1_gg(x1, x2, x3)  =  U1_gg(x3)
U6_gga(x1, x2)  =  U6_gga(x2)
U7_gga(x1, x2, x3, x4)  =  U7_gga(x4)
U8_gga(x1, x2, x3, x4)  =  U8_gga(x2, x4)
U9_gga(x1, x2, x3, x4)  =  U9_gga(x4)
pC_in_ga(x1, x2)  =  pC_in_ga(x1)
pC_out_ga(x1, x2)  =  pC_out_ga(x2)
U3_ga(x1, x2, x3)  =  U3_ga(x3)
U10_gga(x1, x2, x3, x4, x5)  =  U10_gga(x4, x5)
U11_gga(x1, x2, x3, x4)  =  U11_gga(x4)
MD_IN_GGA(x1, x2, x3)  =  MD_IN_GGA(x1, x2)
U4_GGA(x1, x2, x3)  =  U4_GGA(x3)
PB_IN_GA(x1, x2)  =  PB_IN_GA(x1)
U2_GA(x1, x2, x3)  =  U2_GA(x3)
PA_IN_GA(x1, x2)  =  PA_IN_GA(x1)
U1_GA(x1, x2, x3)  =  U1_GA(x3)
U5_GGA(x1, x2)  =  U5_GGA(x2)
PB_IN_GG(x1, x2)  =  PB_IN_GG(x1, x2)
U2_GG(x1, x2, x3)  =  U2_GG(x3)
PA_IN_GG(x1, x2)  =  PA_IN_GG(x1, x2)
U1_GG(x1, x2, x3)  =  U1_GG(x3)
U6_GGA(x1, x2)  =  U6_GGA(x2)
U7_GGA(x1, x2, x3, x4)  =  U7_GGA(x4)
U8_GGA(x1, x2, x3, x4)  =  U8_GGA(x2, x4)
U9_GGA(x1, x2, x3, x4)  =  U9_GGA(x4)
PC_IN_GA(x1, x2)  =  PC_IN_GA(x1)
U3_GA(x1, x2, x3)  =  U3_GA(x3)
U10_GGA(x1, x2, x3, x4, x5)  =  U10_GGA(x4, x5)
U11_GGA(x1, x2, x3, x4)  =  U11_GGA(x4)

We have to consider all (P,R,Pi)-chains

(9) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 3 SCCs with 19 less nodes.

(10) Complex Obligation (AND)

(11) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

PA_IN_GG(s(T33), s(X40)) → PA_IN_GG(T33, X40)

The TRS R consists of the following rules:

mD_in_gga(T11, 0, T11) → mD_out_gga(T11, 0, T11)
mD_in_gga(0, T14, 0) → mD_out_gga(0, T14, 0)
mD_in_gga(s(0), T24, T26) → U4_gga(T24, T26, pB_in_ga(T24, X22))
pB_in_ga(s(0), 0) → pB_out_ga(s(0), 0)
pB_in_ga(s(s(T30)), s(X31)) → U2_ga(T30, X31, pA_in_ga(T30, X31))
pA_in_ga(0, 0) → pA_out_ga(0, 0)
pA_in_ga(s(T33), s(X40)) → U1_ga(T33, X40, pA_in_ga(T33, X40))
U1_ga(T33, X40, pA_out_ga(T33, X40)) → pA_out_ga(s(T33), s(X40))
U2_ga(T30, X31, pA_out_ga(T30, X31)) → pB_out_ga(s(s(T30)), s(X31))
U4_gga(T24, T26, pB_out_ga(T24, X22)) → mD_out_gga(s(0), T24, T26)
mD_in_gga(s(0), T24, 0) → U5_gga(T24, pB_in_gg(T24, 0))
pB_in_gg(s(0), 0) → pB_out_gg(s(0), 0)
pB_in_gg(s(s(T30)), s(X31)) → U2_gg(T30, X31, pA_in_gg(T30, X31))
pA_in_gg(0, 0) → pA_out_gg(0, 0)
pA_in_gg(s(T33), s(X40)) → U1_gg(T33, X40, pA_in_gg(T33, X40))
U1_gg(T33, X40, pA_out_gg(T33, X40)) → pA_out_gg(s(T33), s(X40))
U2_gg(T30, X31, pA_out_gg(T30, X31)) → pB_out_gg(s(s(T30)), s(X31))
U5_gga(T24, pB_out_gg(T24, 0)) → mD_out_gga(s(0), T24, 0)
mD_in_gga(s(0), T24, 0) → U6_gga(T24, pB_in_ga(T24, T47))
U6_gga(T24, pB_out_ga(T24, T47)) → mD_out_gga(s(0), T24, 0)
mD_in_gga(s(s(T55)), T24, T26) → U7_gga(T55, T24, T26, pA_in_ga(T55, X69))
U7_gga(T55, T24, T26, pA_out_ga(T55, X69)) → mD_out_gga(s(s(T55)), T24, T26)
mD_in_gga(s(s(T55)), T24, T26) → U8_gga(T55, T24, T26, pA_in_ga(T55, T56))
U8_gga(T55, T24, T26, pA_out_ga(T55, T56)) → U9_gga(T55, T24, T26, pC_in_ga(T24, X22))
pC_in_ga(s(0), 0) → pC_out_ga(s(0), 0)
pC_in_ga(s(s(T60)), s(X78)) → U3_ga(T60, X78, pA_in_ga(T60, X78))
U3_ga(T60, X78, pA_out_ga(T60, X78)) → pC_out_ga(s(s(T60)), s(X78))
U9_gga(T55, T24, T26, pC_out_ga(T24, X22)) → mD_out_gga(s(s(T55)), T24, T26)
U8_gga(T55, T24, T26, pA_out_ga(T55, T56)) → U10_gga(T55, T24, T26, T56, pC_in_ga(T24, T57))
U10_gga(T55, T24, T26, T56, pC_out_ga(T24, T57)) → U11_gga(T55, T24, T26, mD_in_gga(s(T56), T57, T26))
U11_gga(T55, T24, T26, mD_out_gga(s(T56), T57, T26)) → mD_out_gga(s(s(T55)), T24, T26)

The argument filtering Pi contains the following mapping:
mD_in_gga(x1, x2, x3)  =  mD_in_gga(x1, x2)
0  =  0
mD_out_gga(x1, x2, x3)  =  mD_out_gga
s(x1)  =  s(x1)
U4_gga(x1, x2, x3)  =  U4_gga(x3)
pB_in_ga(x1, x2)  =  pB_in_ga(x1)
pB_out_ga(x1, x2)  =  pB_out_ga(x2)
U2_ga(x1, x2, x3)  =  U2_ga(x3)
pA_in_ga(x1, x2)  =  pA_in_ga(x1)
pA_out_ga(x1, x2)  =  pA_out_ga(x2)
U1_ga(x1, x2, x3)  =  U1_ga(x3)
U5_gga(x1, x2)  =  U5_gga(x2)
pB_in_gg(x1, x2)  =  pB_in_gg(x1, x2)
pB_out_gg(x1, x2)  =  pB_out_gg
U2_gg(x1, x2, x3)  =  U2_gg(x3)
pA_in_gg(x1, x2)  =  pA_in_gg(x1, x2)
pA_out_gg(x1, x2)  =  pA_out_gg
U1_gg(x1, x2, x3)  =  U1_gg(x3)
U6_gga(x1, x2)  =  U6_gga(x2)
U7_gga(x1, x2, x3, x4)  =  U7_gga(x4)
U8_gga(x1, x2, x3, x4)  =  U8_gga(x2, x4)
U9_gga(x1, x2, x3, x4)  =  U9_gga(x4)
pC_in_ga(x1, x2)  =  pC_in_ga(x1)
pC_out_ga(x1, x2)  =  pC_out_ga(x2)
U3_ga(x1, x2, x3)  =  U3_ga(x3)
U10_gga(x1, x2, x3, x4, x5)  =  U10_gga(x4, x5)
U11_gga(x1, x2, x3, x4)  =  U11_gga(x4)
PA_IN_GG(x1, x2)  =  PA_IN_GG(x1, x2)

We have to consider all (P,R,Pi)-chains

(12) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(13) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

PA_IN_GG(s(T33), s(X40)) → PA_IN_GG(T33, X40)

R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains

(14) PiDPToQDPProof (EQUIVALENT transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PA_IN_GG(s(T33), s(X40)) → PA_IN_GG(T33, X40)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(16) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • PA_IN_GG(s(T33), s(X40)) → PA_IN_GG(T33, X40)
    The graph contains the following edges 1 > 1, 2 > 2

(17) YES

(18) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

PA_IN_GA(s(T33), s(X40)) → PA_IN_GA(T33, X40)

The TRS R consists of the following rules:

mD_in_gga(T11, 0, T11) → mD_out_gga(T11, 0, T11)
mD_in_gga(0, T14, 0) → mD_out_gga(0, T14, 0)
mD_in_gga(s(0), T24, T26) → U4_gga(T24, T26, pB_in_ga(T24, X22))
pB_in_ga(s(0), 0) → pB_out_ga(s(0), 0)
pB_in_ga(s(s(T30)), s(X31)) → U2_ga(T30, X31, pA_in_ga(T30, X31))
pA_in_ga(0, 0) → pA_out_ga(0, 0)
pA_in_ga(s(T33), s(X40)) → U1_ga(T33, X40, pA_in_ga(T33, X40))
U1_ga(T33, X40, pA_out_ga(T33, X40)) → pA_out_ga(s(T33), s(X40))
U2_ga(T30, X31, pA_out_ga(T30, X31)) → pB_out_ga(s(s(T30)), s(X31))
U4_gga(T24, T26, pB_out_ga(T24, X22)) → mD_out_gga(s(0), T24, T26)
mD_in_gga(s(0), T24, 0) → U5_gga(T24, pB_in_gg(T24, 0))
pB_in_gg(s(0), 0) → pB_out_gg(s(0), 0)
pB_in_gg(s(s(T30)), s(X31)) → U2_gg(T30, X31, pA_in_gg(T30, X31))
pA_in_gg(0, 0) → pA_out_gg(0, 0)
pA_in_gg(s(T33), s(X40)) → U1_gg(T33, X40, pA_in_gg(T33, X40))
U1_gg(T33, X40, pA_out_gg(T33, X40)) → pA_out_gg(s(T33), s(X40))
U2_gg(T30, X31, pA_out_gg(T30, X31)) → pB_out_gg(s(s(T30)), s(X31))
U5_gga(T24, pB_out_gg(T24, 0)) → mD_out_gga(s(0), T24, 0)
mD_in_gga(s(0), T24, 0) → U6_gga(T24, pB_in_ga(T24, T47))
U6_gga(T24, pB_out_ga(T24, T47)) → mD_out_gga(s(0), T24, 0)
mD_in_gga(s(s(T55)), T24, T26) → U7_gga(T55, T24, T26, pA_in_ga(T55, X69))
U7_gga(T55, T24, T26, pA_out_ga(T55, X69)) → mD_out_gga(s(s(T55)), T24, T26)
mD_in_gga(s(s(T55)), T24, T26) → U8_gga(T55, T24, T26, pA_in_ga(T55, T56))
U8_gga(T55, T24, T26, pA_out_ga(T55, T56)) → U9_gga(T55, T24, T26, pC_in_ga(T24, X22))
pC_in_ga(s(0), 0) → pC_out_ga(s(0), 0)
pC_in_ga(s(s(T60)), s(X78)) → U3_ga(T60, X78, pA_in_ga(T60, X78))
U3_ga(T60, X78, pA_out_ga(T60, X78)) → pC_out_ga(s(s(T60)), s(X78))
U9_gga(T55, T24, T26, pC_out_ga(T24, X22)) → mD_out_gga(s(s(T55)), T24, T26)
U8_gga(T55, T24, T26, pA_out_ga(T55, T56)) → U10_gga(T55, T24, T26, T56, pC_in_ga(T24, T57))
U10_gga(T55, T24, T26, T56, pC_out_ga(T24, T57)) → U11_gga(T55, T24, T26, mD_in_gga(s(T56), T57, T26))
U11_gga(T55, T24, T26, mD_out_gga(s(T56), T57, T26)) → mD_out_gga(s(s(T55)), T24, T26)

The argument filtering Pi contains the following mapping:
mD_in_gga(x1, x2, x3)  =  mD_in_gga(x1, x2)
0  =  0
mD_out_gga(x1, x2, x3)  =  mD_out_gga
s(x1)  =  s(x1)
U4_gga(x1, x2, x3)  =  U4_gga(x3)
pB_in_ga(x1, x2)  =  pB_in_ga(x1)
pB_out_ga(x1, x2)  =  pB_out_ga(x2)
U2_ga(x1, x2, x3)  =  U2_ga(x3)
pA_in_ga(x1, x2)  =  pA_in_ga(x1)
pA_out_ga(x1, x2)  =  pA_out_ga(x2)
U1_ga(x1, x2, x3)  =  U1_ga(x3)
U5_gga(x1, x2)  =  U5_gga(x2)
pB_in_gg(x1, x2)  =  pB_in_gg(x1, x2)
pB_out_gg(x1, x2)  =  pB_out_gg
U2_gg(x1, x2, x3)  =  U2_gg(x3)
pA_in_gg(x1, x2)  =  pA_in_gg(x1, x2)
pA_out_gg(x1, x2)  =  pA_out_gg
U1_gg(x1, x2, x3)  =  U1_gg(x3)
U6_gga(x1, x2)  =  U6_gga(x2)
U7_gga(x1, x2, x3, x4)  =  U7_gga(x4)
U8_gga(x1, x2, x3, x4)  =  U8_gga(x2, x4)
U9_gga(x1, x2, x3, x4)  =  U9_gga(x4)
pC_in_ga(x1, x2)  =  pC_in_ga(x1)
pC_out_ga(x1, x2)  =  pC_out_ga(x2)
U3_ga(x1, x2, x3)  =  U3_ga(x3)
U10_gga(x1, x2, x3, x4, x5)  =  U10_gga(x4, x5)
U11_gga(x1, x2, x3, x4)  =  U11_gga(x4)
PA_IN_GA(x1, x2)  =  PA_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(19) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(20) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

PA_IN_GA(s(T33), s(X40)) → PA_IN_GA(T33, X40)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
PA_IN_GA(x1, x2)  =  PA_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(21) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PA_IN_GA(s(T33)) → PA_IN_GA(T33)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(23) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • PA_IN_GA(s(T33)) → PA_IN_GA(T33)
    The graph contains the following edges 1 > 1

(24) YES

(25) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MD_IN_GGA(s(s(T55)), T24, T26) → U8_GGA(T55, T24, T26, pA_in_ga(T55, T56))
U8_GGA(T55, T24, T26, pA_out_ga(T55, T56)) → U10_GGA(T55, T24, T26, T56, pC_in_ga(T24, T57))
U10_GGA(T55, T24, T26, T56, pC_out_ga(T24, T57)) → MD_IN_GGA(s(T56), T57, T26)

The TRS R consists of the following rules:

mD_in_gga(T11, 0, T11) → mD_out_gga(T11, 0, T11)
mD_in_gga(0, T14, 0) → mD_out_gga(0, T14, 0)
mD_in_gga(s(0), T24, T26) → U4_gga(T24, T26, pB_in_ga(T24, X22))
pB_in_ga(s(0), 0) → pB_out_ga(s(0), 0)
pB_in_ga(s(s(T30)), s(X31)) → U2_ga(T30, X31, pA_in_ga(T30, X31))
pA_in_ga(0, 0) → pA_out_ga(0, 0)
pA_in_ga(s(T33), s(X40)) → U1_ga(T33, X40, pA_in_ga(T33, X40))
U1_ga(T33, X40, pA_out_ga(T33, X40)) → pA_out_ga(s(T33), s(X40))
U2_ga(T30, X31, pA_out_ga(T30, X31)) → pB_out_ga(s(s(T30)), s(X31))
U4_gga(T24, T26, pB_out_ga(T24, X22)) → mD_out_gga(s(0), T24, T26)
mD_in_gga(s(0), T24, 0) → U5_gga(T24, pB_in_gg(T24, 0))
pB_in_gg(s(0), 0) → pB_out_gg(s(0), 0)
pB_in_gg(s(s(T30)), s(X31)) → U2_gg(T30, X31, pA_in_gg(T30, X31))
pA_in_gg(0, 0) → pA_out_gg(0, 0)
pA_in_gg(s(T33), s(X40)) → U1_gg(T33, X40, pA_in_gg(T33, X40))
U1_gg(T33, X40, pA_out_gg(T33, X40)) → pA_out_gg(s(T33), s(X40))
U2_gg(T30, X31, pA_out_gg(T30, X31)) → pB_out_gg(s(s(T30)), s(X31))
U5_gga(T24, pB_out_gg(T24, 0)) → mD_out_gga(s(0), T24, 0)
mD_in_gga(s(0), T24, 0) → U6_gga(T24, pB_in_ga(T24, T47))
U6_gga(T24, pB_out_ga(T24, T47)) → mD_out_gga(s(0), T24, 0)
mD_in_gga(s(s(T55)), T24, T26) → U7_gga(T55, T24, T26, pA_in_ga(T55, X69))
U7_gga(T55, T24, T26, pA_out_ga(T55, X69)) → mD_out_gga(s(s(T55)), T24, T26)
mD_in_gga(s(s(T55)), T24, T26) → U8_gga(T55, T24, T26, pA_in_ga(T55, T56))
U8_gga(T55, T24, T26, pA_out_ga(T55, T56)) → U9_gga(T55, T24, T26, pC_in_ga(T24, X22))
pC_in_ga(s(0), 0) → pC_out_ga(s(0), 0)
pC_in_ga(s(s(T60)), s(X78)) → U3_ga(T60, X78, pA_in_ga(T60, X78))
U3_ga(T60, X78, pA_out_ga(T60, X78)) → pC_out_ga(s(s(T60)), s(X78))
U9_gga(T55, T24, T26, pC_out_ga(T24, X22)) → mD_out_gga(s(s(T55)), T24, T26)
U8_gga(T55, T24, T26, pA_out_ga(T55, T56)) → U10_gga(T55, T24, T26, T56, pC_in_ga(T24, T57))
U10_gga(T55, T24, T26, T56, pC_out_ga(T24, T57)) → U11_gga(T55, T24, T26, mD_in_gga(s(T56), T57, T26))
U11_gga(T55, T24, T26, mD_out_gga(s(T56), T57, T26)) → mD_out_gga(s(s(T55)), T24, T26)

The argument filtering Pi contains the following mapping:
mD_in_gga(x1, x2, x3)  =  mD_in_gga(x1, x2)
0  =  0
mD_out_gga(x1, x2, x3)  =  mD_out_gga
s(x1)  =  s(x1)
U4_gga(x1, x2, x3)  =  U4_gga(x3)
pB_in_ga(x1, x2)  =  pB_in_ga(x1)
pB_out_ga(x1, x2)  =  pB_out_ga(x2)
U2_ga(x1, x2, x3)  =  U2_ga(x3)
pA_in_ga(x1, x2)  =  pA_in_ga(x1)
pA_out_ga(x1, x2)  =  pA_out_ga(x2)
U1_ga(x1, x2, x3)  =  U1_ga(x3)
U5_gga(x1, x2)  =  U5_gga(x2)
pB_in_gg(x1, x2)  =  pB_in_gg(x1, x2)
pB_out_gg(x1, x2)  =  pB_out_gg
U2_gg(x1, x2, x3)  =  U2_gg(x3)
pA_in_gg(x1, x2)  =  pA_in_gg(x1, x2)
pA_out_gg(x1, x2)  =  pA_out_gg
U1_gg(x1, x2, x3)  =  U1_gg(x3)
U6_gga(x1, x2)  =  U6_gga(x2)
U7_gga(x1, x2, x3, x4)  =  U7_gga(x4)
U8_gga(x1, x2, x3, x4)  =  U8_gga(x2, x4)
U9_gga(x1, x2, x3, x4)  =  U9_gga(x4)
pC_in_ga(x1, x2)  =  pC_in_ga(x1)
pC_out_ga(x1, x2)  =  pC_out_ga(x2)
U3_ga(x1, x2, x3)  =  U3_ga(x3)
U10_gga(x1, x2, x3, x4, x5)  =  U10_gga(x4, x5)
U11_gga(x1, x2, x3, x4)  =  U11_gga(x4)
MD_IN_GGA(x1, x2, x3)  =  MD_IN_GGA(x1, x2)
U8_GGA(x1, x2, x3, x4)  =  U8_GGA(x2, x4)
U10_GGA(x1, x2, x3, x4, x5)  =  U10_GGA(x4, x5)

We have to consider all (P,R,Pi)-chains

(26) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(27) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MD_IN_GGA(s(s(T55)), T24, T26) → U8_GGA(T55, T24, T26, pA_in_ga(T55, T56))
U8_GGA(T55, T24, T26, pA_out_ga(T55, T56)) → U10_GGA(T55, T24, T26, T56, pC_in_ga(T24, T57))
U10_GGA(T55, T24, T26, T56, pC_out_ga(T24, T57)) → MD_IN_GGA(s(T56), T57, T26)

The TRS R consists of the following rules:

pA_in_ga(0, 0) → pA_out_ga(0, 0)
pA_in_ga(s(T33), s(X40)) → U1_ga(T33, X40, pA_in_ga(T33, X40))
pC_in_ga(s(0), 0) → pC_out_ga(s(0), 0)
pC_in_ga(s(s(T60)), s(X78)) → U3_ga(T60, X78, pA_in_ga(T60, X78))
U1_ga(T33, X40, pA_out_ga(T33, X40)) → pA_out_ga(s(T33), s(X40))
U3_ga(T60, X78, pA_out_ga(T60, X78)) → pC_out_ga(s(s(T60)), s(X78))

The argument filtering Pi contains the following mapping:
0  =  0
s(x1)  =  s(x1)
pA_in_ga(x1, x2)  =  pA_in_ga(x1)
pA_out_ga(x1, x2)  =  pA_out_ga(x2)
U1_ga(x1, x2, x3)  =  U1_ga(x3)
pC_in_ga(x1, x2)  =  pC_in_ga(x1)
pC_out_ga(x1, x2)  =  pC_out_ga(x2)
U3_ga(x1, x2, x3)  =  U3_ga(x3)
MD_IN_GGA(x1, x2, x3)  =  MD_IN_GGA(x1, x2)
U8_GGA(x1, x2, x3, x4)  =  U8_GGA(x2, x4)
U10_GGA(x1, x2, x3, x4, x5)  =  U10_GGA(x4, x5)

We have to consider all (P,R,Pi)-chains

(28) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(29) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MD_IN_GGA(s(s(T55)), T24) → U8_GGA(T24, pA_in_ga(T55))
U8_GGA(T24, pA_out_ga(T56)) → U10_GGA(T56, pC_in_ga(T24))
U10_GGA(T56, pC_out_ga(T57)) → MD_IN_GGA(s(T56), T57)

The TRS R consists of the following rules:

pA_in_ga(0) → pA_out_ga(0)
pA_in_ga(s(T33)) → U1_ga(pA_in_ga(T33))
pC_in_ga(s(0)) → pC_out_ga(0)
pC_in_ga(s(s(T60))) → U3_ga(pA_in_ga(T60))
U1_ga(pA_out_ga(X40)) → pA_out_ga(s(X40))
U3_ga(pA_out_ga(X78)) → pC_out_ga(s(X78))

The set Q consists of the following terms:

pA_in_ga(x0)
pC_in_ga(x0)
U1_ga(x0)
U3_ga(x0)

We have to consider all (P,Q,R)-chains.

(30) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

MD_IN_GGA(s(s(T55)), T24) → U8_GGA(T24, pA_in_ga(T55))
U8_GGA(T24, pA_out_ga(T56)) → U10_GGA(T56, pC_in_ga(T24))
U10_GGA(T56, pC_out_ga(T57)) → MD_IN_GGA(s(T56), T57)

Strictly oriented rules of the TRS R:

pA_in_ga(0) → pA_out_ga(0)
pA_in_ga(s(T33)) → U1_ga(pA_in_ga(T33))
pC_in_ga(s(0)) → pC_out_ga(0)
pC_in_ga(s(s(T60))) → U3_ga(pA_in_ga(T60))
U1_ga(pA_out_ga(X40)) → pA_out_ga(s(X40))
U3_ga(pA_out_ga(X78)) → pC_out_ga(s(X78))

Used ordering: Knuth-Bendix order [KBO] with precedence:
0 > MDINGGA2 > U3ga1 > pCoutga1 > U10GGA2 > pAinga1 > U1ga1 > pAoutga1 > pCinga1 > U8GGA2 > s1

and weight map:

0=1
pA_in_ga_1=2
pA_out_ga_1=1
s_1=3
U1_ga_1=3
pC_in_ga_1=1
pC_out_ga_1=2
U3_ga_1=4
MD_IN_GGA_2=0
U8_GGA_2=3
U10_GGA_2=2

The variable weight is 1

(31) Obligation:

Q DP problem:
P is empty.
R is empty.
The set Q consists of the following terms:

pA_in_ga(x0)
pC_in_ga(x0)
U1_ga(x0)
U3_ga(x0)

We have to consider all (P,Q,R)-chains.

(32) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(33) YES